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THE RESPONSE  OF A SIMPLY SUPPORTED PLATE TO TRANSIENT  FORCES 

PART I: THE 'EFFECT OF  N-WAVES AT NORMAL INCIDENCE 

By Anthony Craggs 
I n s t i t u t e   o f  Sound and  Vibration  Research 

University  of Southampton,  England 

SUMMARY 

A numerical method i s  presented  for  determining  the  response  of a 
s t ruc ture   to   t rans ien t   forces   o f   a rb i t ra ry  form. It i s  used to   eva lua te   the  
response  of a simply  supported  plate  to an  'n' wave a t  normal incidence. 
Three  response  parameters  are  considered:  the  displacement,  the  acceleration 
and t h e   s t r e s s  a t  a par t icular   point  on the   p la te .  It i s  shown t h a t   t h e  
fundamental mode dominates the  displacement  and s t ress   responses   in  a l l  cases. 
However, there  i s  a significant  contribution from the  higher modes i n   t h e  
accelerations.  The m a x i m u m  response  occurs when the  durat ion  of   the wave i s  
equal t o   t h e  fundamental  period  of  the  plate. 

INTHODUCTION 

This  report  describes a prel iminary  invest igat ion  into  the  effects  
of  Sonic Booms on p a r t s  o f  building  structures.  

There are several  papers which deal w i t h  the  response of plates  arid 
beams t o  '11' w%ves, notably by BEPTVEI'JISTE ami CIiEIiG (1) and CHEBG", using a 
Fourier  Integral  transform  technique. The problem treated was that  of an 
In' wave wi th  zero   r i se   t ime;   th i s  gave a substantial   saving i n  the arnouut of 
algebraic  manipulation  required. One of t he   i nhe ren t   d i f f i cu l t i e s   q i th   t r ans -  
form  methods  of solving  transient problems, and methods involving a d i r ec t  
integrat ion of t he  Duhammel In tegra l  i s  the  degree of labour  required even 
for pulses  with  fairly  simple  shapes. Pamping can also  iacrease  the amount 
of work considerably.  Further, once the  formal  algebraic  solution has  been 
writ ten  out it i s  s t i l l  necessary t o  compute numerical  values from t h i s   f o r -  
mula,  and t h i s  i s  only  for  a special   case.  A new formula is required  for a 
d i f fe ren t  shaped pulse. In th i s   r epor t  a numerical method i s  presented, 
which. i s  based on the   p r inc ip le  of superposition and it i s  used t o  compute 
t h e   e f f e c t s  of r ise time and pulse  duration 011 the  response. The supemosi- 
t ion  process i s  concisely  expressed  in a matrix form. One of the  advantages 
of  the method i s  the  ease  with which it may be  applied  to  solving  response 
problems t o  a forcing  function  of  any  arbitrary form. 

* Unpublished work submitted  by D. H. Cheng, City  College of the  City 
University  of New York, prepared  during  temporary  assignment a t  NASA Langley 
Research  Center. 
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The t i m e  h i s tory   o f  a Sonic Boom is  classical ly   represented by 
a cap i t a l  'N'. Some ac tua l   charac te r i s t ics  are g iven   in   repor t s  by 
HUBBARD and MAGLIERI (2) a l so  WEBB and WARREN ( 3 )  . There t h e  time 
h is tory  is  shown t o  vary from a s ingle  'N' t o  two ' N ' s  superimposed on 
one  another.  Nearly all of   the   t races  are d i s t o r t e d   i n  some  way and 
show wide v a r i a t i o n   i n   t h e  rise and f a l l  time. Since  there   are   these 
differences  in   the  shape  of   the  pulse  it i s  e s s e n t i a l   t h a t   t h e  method 
used t o  s tudy  the  s t ructural   response i s  f lex ib le .  

For  continuous  structures,  problems of a t rans ien t   na ture  may 
be  solved by using a series of normal modes, so tha t   the   na ture   o f   the  
loading and the  response must be such t h a t  a reasonable  accuracy may be 
obtained by using  only a f i n i t e  number of modes. BENVENISTE and CHENG (1) 
points  out that  for   condi t ions  in  which the ra t io   o f  the period of the  
boom t o  the fundamental  period  of  the  plate i s  i n  a range from 1/2 t o  4, 
the response i s  dominated  by the  fundamental mode.  The p l a t e  and beam 
t h a t  were  considered were then  ideal ised  to   s ingle   degree of freedom  sys- 
tems. However, on ly   the   se r ies  for the  displacements were given when 
examining the rate of convergence  and t h i s  i s  not   par t icu lar ly   sens i t ive  
to   the   h igher  terms. 

The response  to  the  loading may be  displacement,  velocity, 
accelerat ion  or   s t ress ,   and,  depending upon what c r i t e r i o n  i s  t o  be used, 
each may be important. However, t he i r   t ime   h i s to r i e s  are d i f fe ren t  and 
it i s  necessary ,   therefore ,   to   t rea t  them individually.  The s t r e s ses  and 
accelerations  contain a greater  contribution from the  higher modes and 
consequently more  modes may be  needed when evaluating  the  response. 

The object of  the  present work i s  t o  s tudy   the   var ia t ion   in   the  
response  parameters:  displacement,  acceleration and s t r e s s  under various 
loading  conditions. The different   load  condi t ions  to  be investigated are 
realised by changing the  rise time and duration  of  the boom. 

SYMBOLS 

W 

W 
.. 

P 

w 

E 

displacement 

acceleration 

stress 

mass density 

natural  frequency 

Young's Modulus 
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t h   p l a t e   t h i c k n e s s  
6 

P ,P pressure,  maximum pressure 

h ( t )  Un?t impulse  response  function 

[HJ Integrating  matrix  containing  unit  impulse  functions 

CR. Integrat ing matrix for  unit  impulse  functions of t h e  
principal  co-ordinates 

a,b  Overall  plate  dimensions 

B Aspect r a t i o  = b/a 

d dimensionless  quantities  having  the same time 
dependence as the  principal  displacement 

2. dimensionless  quantities  having  the same time 
dependence as the   p r inc ipa l   acce le ra t ion  

Rmn ( P m 2  + n2)/(B2 + 1) 

w natural frequency  of m, nth mode mn 

h dimensionless  time  factor 

t time 

T1 periodic  time  of  fundamental mode 

T duration o f  pulse 

V damping coef f ic ien t  

THE: RESPONSE OF A SIMPLE UNDAMPED OSCILLATOR TO AN IMPULSE 

In  order t o  obtain a numerical  solution t o  an a rb i t ra ry   forc ing  
it i s  intended  to  break up the  forcing  funct ion  into a f i n i t e  number of 
segments of  equal  duration. Each segment i s  then   t rea ted  as an  impulse and 
the  net  response i s  b u i l t  up by the  process  of  superposition. There i s ,  
however, a l imi t a t ion  on the  width of each segment i f  the  response is t o  
be  governed  almost e n t i r e l y  on i t s  area,   i .e.   the  net   impulse,  and  not, t o  
any marked degree, on i t s  shape. One r e s t r i c t i o n  is  tha t   the   dura t ion  i s  
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small when it i s  compared with  the  period  of  the system. A more 
quantitative bound may be found heuris t ical ly  by comparing. the  responses 
of a simple osc i l l a to r   t o   d i f f e ren t  shaped pulses. 

Fundamental Results 

For free  vibration  the  displacement  of a simple  oscillator i s  
dependent only on the   in i t ia l   condi t ions  and it is  given by: 

V. 
1 x = x.  cos u t  + - s in  u t  

1 o (1) 

where x and v.  are  the  initial  displacement and velocity  respectively 
and w iis the  natural  frequency. 1 

In response t o  a pulse  having any time dependence, f( ' ) ,  and 
duration, T, the  solution  for  the  displacement when the  system is 
le f t   v ibra t ing   f ree ly ,  may be  obtained from the Duhammel Integral  and it 
i s  given by:- 

T 

f(T) . s i n   o ( t  - ')d' o t > T  

0 

and because the limits a re  independent  of t, then 

T 
r 

2 ( t )  = - dx = 
dt I -  o d t  

f ( ' )  d ( s i n   o ( t  - .c))d.r 

0 

These resu l t s  w i l l  now be applied to   t he   pu l se  shown i n  Fig. 1. 

Rectangular  Pulse. f(') = F 0 < T < T; f(') = 0 T > T. 
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FIG. 1 

A t  time t = T 

T T 

x = 1 s i n  w(T - T)dT ; v = F I COS w(T - -r)dT. T u  T 

0 0 

Making t h e   r e s t r i c t i o n   t h a t   s i n  w(T - T )  w(T - T ) ,  . 
then  cos w(T - T )  5 1 - 2 w2(T - T ) ~  

0 

T 

v = F I 1 - Zw2(T2 - 2T.r + . r2)  = FT(1 - z 1 w2T2). T 

0 

Subst i tut ing xT and v i n  (1) then  gives: T 

FT 1 T x =  - 
w 

(1 - w 2 ~ ~ )  s i n  w ( t  - T I  + FT.F cos w ( t  - 
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and af ter   put t ing wT = A ,  and FT = A, the   area under the  pulse,  then 

x = - ((1 - 1 / 6 ~ ~ )  s i n  w(t-T) + ;A cos w( t -T))  A 
w ( 4 )  

for t > T. 

Triangular  Pulse. f ( T )  = . F 0 < T < T; f ( T )  = 0 T > T. T 

Making the same restrictions  as  in  the  previous  case,   then 

7 

0 

T 

2 ( T 2 ~  - ~ T T ~  + -r3)d, = iFT(1 - 12 1 w2T2). 
T T  

0 

Triangular Pulse. f ( T )  = F(l - T/T)  0 < T < T; f ( T )  = 0 T > T. 

Using a similar procedure to  the  previous  cases,  then 

A 2 
w 3 

Equations ( h ) ,  ( 5 )  and ( 6 )  may be arranged into  the  following form 

((1 - y) 5 A2 s in  w ( t  - T )  + -A cos w ( t  - T ) )  x = -  ( 6 )  
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These results show t h a t  , provided A < g, t h e  most important  factor 
which influences  the  response is t h e  area under the  curve, i.e. the  
magnitude of the  impulse;  the  shape of the  curve i s  of  secondary 
importance.  Therefore, fo r  all prac t i ca l  purposes any forcing 
flmction  can  be  divided up in to  a f i n i t e  number of  I'ectangular  pulses. 
Further,  instead of using e q u a t i o n m o r  computing the  response t o  
each  impulse  the  simpler form 

x = -  * s i n  w(t-T) t > T  (10 > 
w 

may be  used. 

A t  the  worst ,   for A = 2, t he   e r ro r   i n   t he  amplitude i s  
approximately 5% and t h i s  i s  when a pulse  of  the  type shown i n  Fig. l ( c )  
i s  being  approximated. Most of  the  time  the  pulses will be of a 
trapezoidal form  and the   e r ro r  w i l l  be much smaller.  In  equation (10) 
the   effect   of   the  phJ.se angle, 9 ,  has been neglected.  This i s  
reasonable  since $I i s  dependent  only on the  magnitude  of the   s tep   s ize  
and not on the  size  of  the  impulse,  and,  provided  that  the  step  size i s  
constant,   the  error  in  the  t ime  lag may be made  up  by simply moving the  
time  origin  along 1/2. 

The Matrix Form for  the  Superposition  Process 

Once the  forcing  function  has been ideal ised  into a f i n i t e  number 
of  rectangular  pulses,  the  total  response may be found by superimposing, 
with  the  appropriate  time  lag,  the  response from each one. If the  impulse 
response and forcing  functions  can  be  stored  numerically  the  superposition 
process may be expressed  as a matrix  multiplication, and i n   t h i s  form is  
easily  evaluated on a d i g i t a l  computer. The matrix form may be deduced 
as  follows : 

Let F be an array  of numbers, each number being  the  value  of  the  input 

force  a t   the   t ime r x A t ,  where A t  i s  the  time  increment.  Let hs be 

an  array  of numbers each  being  the  value  of  the  unit  response  function a t  
the  time s x A t ,  as  may be  calculated from equation (10). The t i m e  
increment , A t ,  needs t o  be the  same i n  both  the  unit  response and the  
forcing  arrays, and providing it i s  suf f ic ien t ly  small the  response, w, 
at the  time s x A t  i s  given by: 

'L 
r 

?, 

S 
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This equation may i n   t u r n  be e q r e s s e d  as a matrix  multiplication. If 
-$ is now an array  containing  the  numerical  values  of  the  response 
h is tory  at the t ime  intervals A t ,  the   re la t ionship between x and 

i s  

. .  
W 1 

2 W 

w3 

. 

. 
W 
S - 

= A t  

{W) 

hl 

h2 hl 

h3 h2 hl 

. h 3 h2 hl . hl 

hS hs-l hs-2 hs-3 ..... hl 
- 

= A t  [HI {FI 

F1 

F2 

F3 . . . 
Fn 
, -  

H, i s  a square  lower  triangular  matrix  of  order s x s; the  
non-zero elements  of t he  r t h  column containing  the first ( s  - r + 1) 
terms  of  the  unit  response h. It should  be  noted t h a t ,  h, may be 
for  any response  parameter, 1.e. displacement,  velocity,  acceleration 
or s t r e s s ;  and,  although for  purposes of i l l u s t r a t i o n  it i s  convenient 
to   consider  H as a full square  matrix, i n   t h e  computation t h i s  would 
involve an excessive amount of  storage  space; and iri fac t  only  the 
unit  response, Q, needs t o  be stored. 

9J 

If a normal mode approach i s  t o  be used the  above may be 
extended t o  a system wi th  a f i n i t e  number of  degrees of freedom: 
the  displacements  then become the  generalised  displacements and the  
forces  the  generalised  forces  for  each mode. For this  case 
equation (11) becomes 

The response a t   po in t  (x, y )  on the  system i s  then 

R i s  a n  integrating  matrix s i m i l a r  t o  H, containing  the  unit 
impulse  response  array for the  generalised  co-ordinates, q. Q i s  
the  array  for  the  generalised  forces and the  mode shape. The  number 
of modes t o  use and therefore   the number o times tha t  equation (12) 
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needs t o  be  applied w i l l  depend upon the  accuracy  iequired  in   the  solut ion.  

The equations (11) and (12)  represent  the Duhammel Integral :  

i .n an aF 
be  gaine 

,proximate matrix form. There are, however, several   advantages  to 
!d from this   formulat ion:  (i) m c e   t h e  impulse  response  and 

forcing is def ined  the  solut ion i s  obtained  simply by a matrix  multiplication 
no matter what degree  of  complexity  the  forcing  function may be; t h i s  could 
be an  array  of random numbers, (ii) the  presence  of damping does  not  increase 
the  labour   in   obtaining a solut ion as it does i n   t h e   a n a l y t i c a l  methods. 

TRANSIENT RESPONSE OF A SIMPLY SUPPORTED PLATE 

The results of  the  previous  sections are now a p p l i e d   t o   t h e  
response  of a simply-supported p la te   to   Sonic  booms. In  obtaining a 
solut ion a normal mode approach i s  used  and  any damping p resen t   i n   t he  
system is  assumed not  to  couple  these modes. Also, it will be assumed 
t h a t   t h e   p l a t e  i s  v ibra t ing   in  a vacuo so that there  i s  no acoustic 
back pressure  acting. Three response  parameters are t o  be computed: 
the  displacement, stress and acce lera t ion   in   o rder   to  compare t h e  
different   effects   of   the   higher  modes. 

General Theory 

is 
The equation  of  motion  of a uniform pla te   in   forced   v ibra t ion  

To obtain a solut ion  of   this   equat ion  the  r ight  hand s ide  i s  first 
put  equal t o  zero  and i n   t h i s  form it i s  s a t i s f i e d  by a s ingle  mode, $r, 

with  time dependence s i n  w t giving: r 
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A solution  of  equation (14) may be  obtained i n  a s e r i e s  form by making 
the  subst i tut ions 

r=l 

giving 

and after  applying  equation (15) , this   equat ion  reduces  to  

introducing a viscous damping coeff ic ient ,  2 w  v%, i n to  each  term  of 

t he  l e f t  hand side,   then  equating  coefficients of d.Jr gives 
r 

For  a  simply-supported plate  d.Jm(xyy) = s i n  - m.rrx . s in  x a b 

0 0  0 0  

r r  
b a  

therefore 

0 0  
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Response to Plane  Pressure  Pulse  at  Normal  Incidence 

When a plane  pressure  pulse  is  normally  incident  on a flat 
plate  the  forcing  pressure  p(x, y, t)  can  be  exgressed  in  the  separable 
f orm 

A 

P(X, y, t) = p. fl(d. f2(X' Y) 
A 

p is  the  maximum  pressure; fi(T) = 1 and fi(x,y) = 1 

"" 

1 --- a 

0 0  

A 

It  is  useful to work  in  terms  of  dimensionless  parameters  and  this  may 
be  achieved  by  expressing  the  responses in  the  form  of a factor x the 
maximum  stiffness  response  in  the  first  mode,  which  may  be  obtained  by 
neglecting  the  inertia  term;  the  response  would  then  follow  the  form of 
the  forcing  function.  Since,  under  these  conditions,  the  response  is 
dominated  by  the  fundamental  mode  the  factor  for  the  displacements 
represents,  approximately,  the  dynamic  amplification. 

A 

A 1 p11 - 16; - 
" 

'11 stiff p h  2 w1 1 

" 

Now if Qmn = dm x qll &iff¶ 
A 

then  substituting  this  in  equation (16) 
gives : 

and  using  the  Duhammel  Integral  gives 

0 



where X i s  a dimensionless time fac tor ,  some fract ion  of   the  lowest  
period of t h e  system, 27r/w11, then   in   the   no ta t ion  of the  previous 

section: 

-R u(r-s+l)h 
f ( rx)e  mn 

d (SA) = x cm sin(R G 2 ( r - s + 1 ) h )  rn r=l R G v 2  mn 
mn 

The dimensionless  displacement , G(x,y),  can now be wr i t ten  
i n  terms of  t he  normal modes: 

The suffix  notation used now refers t o   t h e  ordei- i n  which each  generalised 
co-ordinate  occurs  in  the  frequency  scale. 

The Acceleration and St ress  Responses 

It has  already  been  mentioned  that  the  unit  impulse  response 
could be computed fo r  any parameter. The impulse  acceleration  response 
i s  

h 

The computed value  in  the  dimensionless form is: 

The s t r e s s e s   i n   t h e  x  and  y d i rec t ions   a re  computed from t h e  two 
eauat  ions 

12 



After subs t i t u t ing   fo r  w i n  terms of   the  normal modes, t h a t  i s  - 
w = I d m  sin.. - mTx 

a b 

be  expressed in   the  dimensionless  form 

s i n  x , in   these   equat ions   the  stresses may 

The  Range for  the  Experimental Loading Parameters 

The range  of  data  used  in  the  computation which is considered t o  
be o f   p rac t i ca l   i n t e re s t  i s  given below. The upper l i m i t  fo r   the   per iod  
rat io   could have  been much higher  than 3, but beyond th is   va lue   the  
response i s  eas i ly   p red ic tab le  as the  displacement  response  follows  the 
t i m e  history  of  the  forcing  function. 

Period  Ratio 

Rise Time 

For the  isochronous  case, 
two damping coef f ic ien ts ,  

Aspect  Ratio 

; t o  3 
T/20  t o  T/4 

T / T  = 1, both a s ingle  and double 'N' and 
V = .002 and .02, were considered. 

COMPUTATION PROCEDURE 

A FORTRAN programme was written,  based on the   theory  given  in  
sect ion 5 ,  to  evaluate  the  response  of  the  plate  under  the  various  loading 
conditions .. Since  the  computation time was important when using  the 
programmes a s t e p   s i z e  had t o  be  found tha t  was compatible  with  the nature of 
t h e  problem. For good reso lu t ion   the   s tep   s ize  needed t o  be a f r ac t ion   o f   t he  
lowest  period  of  the  idealised  system and it was necessary,   therefore ,   to  
have  an estimate of   the  number of modes t h a t  were effect ively  contr ibut ing 
to  the  response  under  the  different  loadings.   This was found by a trial 
and error  procedure: first computing the  response  the  response  with a 
l a rge  number of  modes, and then comparing th i s   wi th   the   response   tha t  w a s  
obtained when t h e  number of  modes and s tep   s ize  were halved. 

13 



When the   pu lse  i s  normally  incident on the   p la te   on ly   the  odd 
modes are excited, and for  the  period  ratios  considered it w a s  necessary 
to use t h e  first three  modes i n   t h e  set, i.e. m = 1, n = 1, 3, 5, t o  
give good accuracy. The effect   of  the  higher modes n = 3, 5 were more 
s ignif icant   for   the  accelerat ions  than  for  any other  parameters. 
Generally,  for  displacements  and  stresses, a s tep   s ize ,  A = n/20 was 
found t o  be sufficient  though  for  the  accelerations it was necessary t o  
have X = .rr/40. 

RESULTS 

Some typical  response  curves  are shown i n  Figs. 2 t o  13, these 
are   included  in   order   to   i l lustrate   the  sal ient   features   about   the  nature  
of t h e  response. In   o rde r   t o  compress t h e  amount of data it i s  necessary 
t o  choose only the  important  quantit ies:   the m a x i m u m  values  of  the dis- 
placements,  stresses and accelerat ions  for   the  different   loading  var iables  
a re  shown i n  Tables 1 and 2. Table 1 shows the  values   for   the  forced 
motion  and  Table 3 the  values   for   the  ensuing  f ree   vibrat ion.  Any marked 
contribution from the  higher modes increases  the number of  peaks i n  a 
given  t ime;  the  effect  i s  accounted  for by the  quant i ty ,  N t h e  

number of posit ive  peaks  in one cycle  of  the  fundamental mode; these 
values  are  also  included  in  the  tables.  

P’ 

Figs. 2 t o  9 show the  t ime  history  of  the  stresses and displace- 
ments for   the   d i f fe ren t  !n! waves. With the   par t icu lar   p la te   cons idered  
there  i s  very l i t t l e   d i f f e r e n c e   i n   t h e  form of t h e  stress and displacement 
responses, so tha t  it i s  not  necessary t o  show them both. A brief  survey 
of these  curves shows t h a t   t h e   e f f e c t s  of  the  loading may be  different  
depending upon whether t he  system is  being  forced or whether it is  i n   t h e  
subsequent s ta te   of   f ree   vibrat ion;  it i s  necessary,   therefore,   to 
specify  the  locat ion  in   t ime.  

During the  period  over which the   pu lse  i s  acting, when t h e   i n i t i a l  
r i s e   i n   p re s su re  i s  taking  place,  a  decrease  in rise time causes an increase 
i n   t h e  magnitude  of the  response.  Figs. 2 t o  9. This i s  because  decreasing 
the  rise time  effectively  increases  the  net  impulse and  hence the  displace- 
ment. It might  be  considered that   decreasing  the  r ise   t ime  increases   the 
content  of  the  higher modes, but  for  the  displacements and s t r e s ses   t he  
effects  must be s m a l l  as the  response  appears t o  be  dominated by the  funda- 
mental mode i n  a l l  the  cases  studied. 

A s  might be  expected, from simple  frequency  response  considerations, 
the  overall   forced motion i s  governed by the  par t icular   value of the  period 
rat io .  When T/T i s  small as in   Figs  . 8 and 9 , both w and u are small; 
when T / T  i s  la rge  (14 t o  3) as in  Figs. 2 t o  5,  t h e  magnitude i s  greater. 
The maximum values seem t o   l i e  between 1.5 and 2.0; their posi t ion and 
magnitudes  being  strongly  influenced by t h e   r i s e  time. Under these  conditions 
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t he  form of  the  forced  motion may be  clearly  dist inguished  with  the 
harmonic motion  superimposed. 

When t h e   p l a t e  i s  vibrat ing  f reely at t h e  time, t , greater  
than T it is  the  overal l   shape  of   the  pulse  and i ts  duration which i s  
important. Changes in   the  load  parameters   br ing  var ia t ions  in   the form 
of  the  response, but not  always i n   t h e  same direction. For instance, 
i f  Figs. 2 and 3 a re  compared, it m q  be  seen i n   t h e  former t h a t  
decreasing  the rise time  increased  the maximum response;   but ,   in   the 
lat ter the  exact  opposite  occurs. The fac t   tha t   the   response   in  a 
par t icu lar  mode  may be  small at zero in   t he   f r ee   v ib ra t ion ,  even though 
there  i s  substant ia l  movement during  the  appl icat ion  of   the  pulse  i s  
interest ing.  It i s  shown i n   t h e  Appendix, for  an undamped  mode, tha t  
t h i s  occurs when the  Fourier   Integral   of   the   pulse  i s  zero at t h e  
natural  frequency w . If t h i s  condition i s  almost satisfied 
substant ia l  changes fn  the  response may r e s u l t  by only a minor  change 
in   e i ther   the  forcing  funct ion or system character is t ics .  When t h e  
e f fec t  i s  t o  decrease  the  response it gives r ise t o  an  apparent  increase 
i n   t h e  damping. 

The la rges t  dynamic amplification  occurs when the   per iod   ra t io  
i s  unity,  the  isochronous  condition, where t h e  push-pull  effect of the 
boom matches up with  the  natural  frequency of t he  fundamental mode. 
Fig. 6 shows the  variation  in  the  resonant  response  with  the rise time; 
t h e  maximum value,  about 2.6, occurs when the   r i se   t ime i s  one quarter 
of  the  fundamental  period;  the  lowest,  about 2.1, obtained by extra- 
polat ing  the  i l lustrated  resul ts ,   occurs  when t h e   r i s e  t-ime i s  zero. 

It i s  poss ib l e   t o  have  a twin boom i n   t h e  wake of  the main one 
due t o  ground re f lec t ion ,  and a t  a certain  height  the  pressure  loading 
w i l l  be t h a t  of a double vN*. The e f f ec t s  of  t h i s   f o r   t h e  isochronous 
condition i s  shown i n  Fig. 7, it may be  noted  that   the dynamic amplification 
factors  are now double  those f o r  t he   s ing le  boom, t h e  maximum  now being 
5.2. When the  damping fac tor  was reduced from 0.02 t o  0.002 t h e  
maximum value  increases a fur ther  10% t o  5.7. 

Figs. 10 t o  13 show  some of  the  acceleration  curves. The most 
s t r iking  difference between these  and the   s t r e s ses  i s  tha t   t he   e f f ec t  of 
the  higher modes is  more noticeable. When t h e   r i s e  time decreases  the 
in i t i a l   acce l e ra t ions  and the  contributions of these modes also increases,  
a s  shown i n  Fig. 10. Because of i t s  dependence on the  higher modes t h e  
acceleration does  not change with  a l terat ion  of   the  per iod  ra t io   in   the 
manner that  the  other  parameters do; t h e  maximum values do not fa l l  off 
for  -r/T l e s s   t han  1. This i s  shown c l ea r ly   i n  Fig. 13 where f o r  T/T 
equal t o  8 , t h e  maximum value is 2.1 compared with  the  values  in  Fig.  10, 
T/T equal t o  3, of -1.5. 
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DISCUSSION 

The approximate method used i n   t h i s  work gives results which are 
compatible to   those   ob ta ined  from analy t ica l  methods, as i n  (1). Though 
it has  been  applied  here t o  eva lua t ing   the   response   to  regular pulse 
shapes  there i s  no added d i f f icu l ty   in   ob ta in ing   the   response   to  more 
complex wave forms. 

Apart from the  special   isochronous  case it appears from t h e  
r e s u l t s   t h a t   t h e r e  w i l l  in   general   be  a dynamic amplification  of  about 
2. Since  the boom overpressure i s  not  expected t o  be much above 
3 1 b s / f t o 2  and the  s ta t ic   breaking  pressure  of  windows i n   t h e   r e g i o n  of 
80 1bs . / r to2   there  i s  no reason t o  expect failure t o  occur  under t h e  
load  of a s ing le  boom. 

The f a c t   t h a t   t h e  fundamental mode dominates the  displacement 
and s t ress   responses   in  a l l  but a f e w  cases i s  important as it means t h a t  
t h e   p l a t e  may be  idealized as a single  degree  of  freedom  systems. However, 
it is  d i f f i c u l t   t o  make generalisations  for  other  types  of  loading  without 
considering  the  matter  further.  Under the  condi t ions  that   the   response 
of   the  plate   has  been s tudied ,   the  number of modes which make a s ign i f i -  
cant  contribution i s  s t rongly  dictated by the   spac ing   of   the i r   na tura l  
f r equenc ie s   r e l a t ive   t o   t ha t   o f   t he  fundamental mode.  The frequency 
rat i o  , f o r   t h e  first 9 modes are shown i n  Table 3 below;  of 
these  only one t h i r d  are ac t ive  under  normal  incidence,  those marked 
with an as te r i sk .  These are reasonably  well  separated. 

Rmn, 

Table 3 

m, n 1, 1 1, 2 2, 1 1, 3 2, 2 2, 3 1, 4 3, 1 2, 4 I 
. . . ~ -~ ~~ 

Rmn l.oo* 1.90 3.07 3.70* 4.00 5.54 5.60  6.24" 7.76 

A s  far as t h e  (1, 3) and (3, 1) modes are concerned, for   the  range  of  
period  ratio  considered, a crude  approximation t o   t h e  modal coeff ic ients  
may be  obtained by assuming the  forcing  funct ion i s  a step  input.  The 
r e l a t i v e  magnitude  of  the modal displacements i n   t h e  series is  
l/mn.R&, so  t h a t   t h e  (1, 3) mode has  only  about 2.5% of  the  fundamental 

contribution and t h e  (3, 1) mode less than 1%. The other  modes a r e  
brought  into  play when t h e  boom arr ives   obl iquely at the   p la te   sur face .  
The s ignif icance  of   these  are  shown i n   p a r t  I1 of   this   paper  (,NASA C~-1176). 
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CONCLUSIONS 

A method for  determining  the  response  of a s t r u c t u r e   t o  an 
a r b i t r a r y  waveform has  been  presented.  This  has  been  applied t o  finding 
the  response of a simply  supported  plate t o  ' D '  waves at normal incidence. 
Both the   pe r iod   r a t io ,  T/T,  and t h e  r ise time were varied. The following 
conclusions are drawn. 

(i) Effect of Period  Ratio T/T: The m a x i m u m  amplification 
factor  occurs when T/T i s  uni ty  and i n  th i s   cond i t ion   t he  maximum 
value i s  s e n s i t i v e   t o  a v a r i a t i o n   i n   t h e  rise time. The greatest  
magnification  factor  for  displacement i s  2.6. 

(ii) Effect  of Rise Time: In   the  durat ion  of   the  pressure 
pulse,  decreasing  the r ise time  increases  the  magnitude of the  response, 
and increases   the  contr ibut ions from the  higher  modes. When T / T  equals 
one, t h e  maximum amplification  factor  occurs when t h e  r ise time is t of 
the   dura t ion  of the   pu lse .  It i s  then  about 2.6. For ze ro  rise time 
the  amplif icat ion  factor  i s  about 2.1. When a double 'N' exci tes   the  
system  under  isochronous  conditions  these  factors  are  doubled. 

(iii) For t he   p l a t e   ( a spec t   r a t io  1.5) t he re  i s  l i t t l e  difference 
between the  displacement and s t ress   t ime  h i s tor ies  as these were almost 
completely  dominated  by  the  fundamental mode.  However, the  accelerat ions 
are affected more by the   higher  modes and,  consequently,  the  response 
contains more peaks. 

( i v )  Under cer ta in   condi t ions  the  response  for   the  t ime t > T ,  
(i.e. when t h e  system is  le f t  v ibra t ing   f ree ly)  i s  very small. This i s  
dependent more on the  overal l   shape of the   pu lse  and i t s  r e l a t ion  t c  t h e  
fundamental  period of t h e  system  than t o  any other  single  parameter. 

APPENDIX 

The Condition  for an Undamped O s c i l l a t o r   t o  have  Zero 
Response after  the  Application  of a Pulse 

If the   dura t ion   of   the   pu lse  i s ,  T then  the  displacement 
P' 

and veloci ty  at t h e  time T = T i s  given by: 



1 x(T) = - F(T)   s in  wn(T - T ) d T  
n w J 

0 

b(T) = F(T:  cos wn(T - T}dT. f 
J 

0 

Now, for  zero  response,   x(T) = %(TI  = 0. These  conditions 
may be expressed by a s ing le  complex equation i f  use i s  made of t h e  
phase  plane  and  plot H(T)/w, as the   absc issa  and  x(T) as ordinate  then: 

W(T) = - + jx(T) f ( T )  
w n 

= -  1 I 
0 

F ( T )  (COS un(T - T )  + j s i n  wn(T - T) 1d.c 
n 

0 

rn m 

The te rm  ins ide   the   in tegra l  i s  the  Fourier Transform of t h e  
input   F(T) ,  and the  condi t ion  for   zero  response  af ter   the   appl icat ion 
of a pulse  i s  tha t   the   Four ie r  Transform  should  be  zero at the  frequency, 
0 .  n 
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FIG. 5 .  w, Effect  of Rise Time, Period Ratio,  1;. 
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FIG. 7. ux, Ef fec t  of Rise Time,  Double N ,  Isochronous Case. 
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